First steps towards p-adic Langlands functoriality

نویسندگان

  • Christophe Breuil
  • Peter Schneider
چکیده

— By the theory of Colmez and Fontaine, a de Rham representation of the Galois group of a local field roughly corresponds to a representation of the Weil-Deligne group equipped with an admissible filtration on the underlying vector space. Using a modification of the classical local Langlands correspondence, we associate with any pair consisting of a Weil-Deligne group representation and a type of a filtration (admissible or not) a specific locally algebraic representation of a general linear group. We advertise the conjecture that this pair comes from a de Rham representation if and only if the corresponding locally algebraic representation carries an invariant norm. In the crystalline case, the Weil-Deligne group representation is unramified and the associated locally algebraic representation can be studied using the classical Satake isomorphism. By extending the latter to a specific norm completion of the Hecke algebra, we show that the existence of an invariant norm implies that our pair, indeed, comes from a crystalline representation. We also show, by using the formalism of Tannakian categories, that this latter fact is compatible with classical unramified Langlands functoriality and therefore generalizes to arbitrary split reductive groups. Résumé. — Par la théorie de Colmez et Fontaine, une représentation de de Rham du groupe de Galois d’un corps local correspond essentiellement à une représentation du groupe de Weil-Deligne dont l’espace sous-jacent est muni d’une filtration admissible. En modifiant la correspondance locale de Langlands, on associe à chaque couple formé d’une représentation du groupe de Weil-Deligne et des poids d’une filtration (admissible ou pas) une représentation localement algébrique particulière d’un groupe linéaire général. On conjecture qu’un couple provient d’une représentation de de Rham si et seulement si la représentation localement algébrique correspondante possède une norme invariante. Dans le cas cristallin, la représentation du groupe de Weil-Deligne est non-ramifiée et la représentation localement algébrique associée peut s’étudier grâce à l’isomorphisme de Satake classique. En prolongeant ce dernier à une complétion de l’algèbre de Hecke, on montre que l’existence d’une norme invariante comme ci-dessus implique que le couple provient effectivement d’une représentation cristalline. On montre aussi, en utilisant le formalisme des catégories tannakiennes, que ce dernier fait est compatible avec la fonctorialité de Langlands non-ramifiée classique, et donc qu’il se généralise à tout groupe réductif déployé. 2 C. BREUIL & P. SCHNEIDER

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach-Hecke Algebras and p-Adic Galois Representations

In this paper, we take some initial steps towards illuminating the (hypothetical) p-adic local Langlands functoriality principle relating Galois representations of a p-adic field L and admissible unitary Banach space representations of G(L) when G is a split reductive group over L. 2000 Mathematics Subject Classification: 11F80, 11S37, 22E50

متن کامل

Continuous representation theory of p-adic Lie groups

In this paper we give an overview over the basic features of the continuous representation theory of p-adic Lie groups as it has emerged during the last five years. The main motivation for developing such a theory is a possible extension of the local Langlands program to p-adic Galois representations. This is still very much in its infancy. But in the last section we will describe a first appro...

متن کامل

ON REPRESENTATION THEORY OF GL(n) OVER p-ADIC DIVISION ALGEBRA AND UNITARITY IN JACQUET-LANGLANDS CORRESPONDENCE

Let F be a p-adic field of characteristic 0, and let A be an F -central division algebra of dimension dA over F . In the paper we first develop the representation theory of GL(m,A), assuming that holds the conjecture which claims that unitary parabolic induction is irreducible for GL(m,A)’s. Among others, we obtain the formula for characters of irreducible unitary representations of GL(m,A) in ...

متن کامل

Langlands Functoriality Conjecture

Functoriality conjecture is one of the central and influential subjects of the present day mathematics. Functoriality is the profound lifting problem formulated by Robert Langlands in the late 1960s in order to establish nonabelian class field theory. In this expository article, I describe the Langlands-Shahidi method, the local and global Langlands conjectures and the converse theorems which a...

متن کامل

On tensor product $L$-functions and Langlands functoriality

‎In the spirit of the Langlands proposal on  Beyond Endoscopy ‎we discuss the explicit relation between the Langlands functorial transfers and automorphic $L$-functions‎. ‎It is well-known that the poles of the $L$-functions have deep impact to the Langlands functoriality‎. ‎Our discussion also‎ ‎includes the meaning of the central value of the tensor product $L$-functions in terms of the Langl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008